Literature Review
“How does teaching students to program animation help them learn math?”
There are several different methodologies on how to approach math in programming. Throughout this literature review, I will explore these methodologies from preschool to college level. There is a distinct difference in how math is integrated into teaching programming at different levels. What is consistent throughout the articles is that math, logic, and problem solving are important skills to use while programming. There are four phases in programming animation and in each phase math is essential. How an instructor approached teaching, changed what type of cognitive learning occurred, what type of learning environment developed, and how motivated the students become.

College methodologies

In articles focusing on programming and math at the college level, teaching programming was the priority and math, logic, and problem solving was just expected or integrated in the way the instructor taught about organizing the program. The articles did not focus on if the students were motivated or interested in the classes, but on how math skills affected the student’s chance of being successful in the computer science program.

College level instructors were more adamant about students already being proficient in mathematics, problem solving, and logic. One instructor was appalled at students who were not efficient in math and seemed to expect them to fail as computer science students right away. “Despite having taught computer science courses at all levels for several years, I am still amazed, and perhaps appalled, by comments and questions I get from students, questions such as ‘Will we have to do any math on the test?’ or ‘I can’t read the textbook. It’s like reading a math book and everyone knows that you can’t read a math book.’ These students, unfortunately, do not remain computer science majors for long” (Beaubouef, 2002, pg. 57). Her article continued on to make several clear points on how math was used throughout every level of programming from beginner to advanced programming courses, with a break down of the math used at each level. While the break down of math was quite impressive, her overlying theme seemed to be students must have an in-depth knowledge of math before entering into computer science to succeed.

Bruce, Drysdale, Kelemen, & Tucker also explained why a deep understanding of math is essential in programming. “In many cases, specific topics in mathematics are not as important as having a high level of mathematical sophistication. Just as athletes might cross-train by running and lifting weights, computer science students improve their ability to abstract away from details and be more creative in their approaches to problems through exposure to challenging math and mathematically oriented computer science courses” (Bruce, Drysdale, Kelemen, & Tucker, 2003, pg. 41). Within their article they list several scenarios where a broad understanding of math may be useful. These examples include knowing when and what types of algorithms to use for the most efficiency, knowing how to create proofs, and verifying a test case satisfies a specification. At the end of their article they sum up their main point with a powerful sentence, “We know that mathematical thinking will be of use; we just can’t always predict exactly when or what form it will take” (pg. 44). These authors clearly express how every program is different, so the types of math needed for each program will be different.
Most colleges require at least two courses of calculus and one course of statistics to be taken before allowing students to take even the most basic of programming classes (University of Washington, Central Washington University, and Everett Community College). Some articles have quickly mentioned how these courses may weed out the undesirables (D'Antonio, Baldwin, Ford, Henderson, & Wyatt, 2002). Others are cited as saying these classes help reduce the number of computer science students (Bruce, Drysdale, Kelemen, & Tucker, 2003). Whether it’s on purpose or by accident the prerequisites do limit the number of students eligible to enter the programming courses.

Even with the above prerequisites, students may find themselves having trouble if math, logic, and problem solving isn’t addressed throughout the courses. The math they learned may not seem to apply, it may not address certain issues the student needs to solve an equation, or the student may not have developed his/her problem-solving skills in order to design a more complicated program. Students who were about to graduate still had problems with their program design. “Only 9% of graduating seniors produced what the authors call a ‘reasonable design’ for a problem that required several classes and some interesting behaviors” (Thomasson, Ratcliffe, & Thomas, 2006, pg. 29). The key part of design is created in the second stage, when the programmers think through and possibly draw a Unified Modeling Language (UML) flow chart to represent the program’s design.

Even when students are having trouble, one instructor, Richard Wyatt, believes it is important to continue exposing the students to the math, “…even though computer science students neither fully understand nor utilize the math they're exposed to, it is nonetheless important to continue to expose them to it. Some students actually do understand it and benefit enormously both in their understanding of computer science and in their career prospects. But even those who do not understand it still gain perspective by seeing the discipline for what it really is -- as one in which many problems can be understood only mathematically, and in particular, as one in which the more difficult the problem, the more it must be approached mathematically. Such a perspective allows the students to correctly locate themselves in the profession and, at times, can serve to motivated them to attain higher goals” (D'Antonio, Baldwin, Ford, Henderson, & Wyatt, 2002, pg. 101). These higher goals can be seen by students learning the new math to accomplish specific programming goals or to create more advanced programs. A good programmer not only knows when to apply the math, but also how to sift through resources to obtain information on how to solve new problems they haven’t encountered before.

Math is an essential part of programming, as such, some college instructors are taking action to help students through the process. Susanna wrote, “As I worked interactively with computer science students over several decades, I discovered that many of their problems resulted from a lack of understanding of basic principles of logical thought. In time I developed materials to help them incorporate these principles into their own thinking while also teaching them the basic mathematical foundations of computer science” (Henderson, Barker, Epp, & Marion, 2002, pg. 237). Instructors that provide this necessary step help coax their students into applying math concepts that may have been known but not truly understood.
Pre K-12 methodologies
Articles focusing on programming from the preschool through high school levels tend to focus on everyday curriculum including math as a key part in teaching programming. In other words, programming is a tool that helps teach subjects pertinent to the school curriculum. It is interesting to note that several pre K -12 schools have taken digital education to heart. Once they have brought computer technology into their schools, they have developed a whole new approach to teaching. These new approaches effect the classroom environment, how the subjects are taught, the interaction between the teacher and the students, as well as student motivation. There are two main methodologies that will be explored. I will also include some anecdotes on how integrating technology has changed school environments.
Never Mind the Laptops

The first methodology is from the book Never Mind the Laptops, where everyone in the school was given their own laptop. They are not the first or only school, but the book is so well written it makes the perfect example to talk about. The change in the school was extreme. The school underwent several positive changes that truly affected the way the curriculum was taught and the students learned.

One of the biggest changes was how teachers allocated their time. The teachers combined subjects because they found they could teach more than one thing at a time and do more with the time they had. “Lessons became longer as the laptop teachers discovered that they were integrating their lessons more often, melding the studies of society and the environment into writing, math, or science. ‘We just blocked our time in large sections and were less mindful of dividing up our timetable into neat little separate subject periods’” (Johnstone, 2003, pg. 210). This allowed time for bigger projects that encompassed the curriculum that needed to be addressed, and still allowed for students to be creative.

A change in how the material was taught also took place. There was a move from long lectures at the chalkboard to quick mini show-and-tell lessons. Then the rest of the time would be allocated for students to work on their projects. “If a new concept was vital to the topic,” Costa said, “we would demo it, then the kids could modify it and make it better” (Johnstone, 2003, pg. 212). At other times teachers would only need to teach one student something, and by the next day 80% of the class would know how to do it.

Teachers and students worked side by side. Teachers didn’t always have the answers. Students and teachers both learned as the projects were developed. Sometimes students worked together to solve problems. “Sharing and helping one another were an integral part of the process. ‘We were amazed watching how the kids would stop doing what they were engrossed in, put it down, and happily go help someone else’” (Johnstone, 2003, pg. 209). This give and take was an essential part of the classroom environment.

Problems became more challenging and instant success was not always possible, therefore it was okay to make mistakes. Sometime a problem would need to be attempted, and then based on the outcome adjusted. The focus wasn’t on getting an answer right or wrong on the first try, but on figuring out a solution to the problem. It was about challenging the student to see if they could find a solution and make the program work. “‘It created an environment where it was okay to show each other how to do something. It was okay to say, I don’t know how’. In the laptop classes, risk-taking…became an everyday reality. ‘There was a whole environment of don’t give up, have a go… The next project might be hard, but having succeeded in the past made the students more willing to take risks” (Johnstone, 2003, pg. 213). The trials that failed or succeeded all became something to learn from. Even when a mistake was made an outcome would be seen and hopefully provide a source of insight.

The students also were motivated and empowered by what they were accomplishing. “Often they set themselves challenges. The girls wanted to have things happen a certain way, or look a certain way, and they would stick with it until they had achieved their goal. The change in attitude helped to lift the standard of work. The beauty of it was that the students were the ones that raised the bar” (Johnstone, 2003, pg. 213). Students took time during recess and slumber parties to keep working on their projects. Because the problems were challenging the students were motivated to keep working and to see how much they could accomplish. Sometime these challenges resulted in students creating their own programs. “One, called Angle Maker, allowed students to guess the degree of a randomly-drawn angle. (This was later changed to guessing whether the angel was acute, right, or obtuse)” (Johnstone, 2003, pg. 211).

How integrating technology has changed school environments

Never Mind the Laptops was inspiring, especially chapter 19. It was amazing how well the laptops were integrated into the curriculum and how much the students learned from them. Looking further into the motivation of technology in education, I found that these types of changes and attitudes don’t only result from laptops being given to everyone. Schools that have integrated computers and technology also have many of the same results.
Children working together were a common occurrence in schools that included technology into their curriculum. Some teachers worked on developing this type of environment, while in other situations it came naturally. Two teachers describe how they build the process into their classroom structure. “Start small. Teach a few students how to use a particular piece of software and then have those students teach the next group and so on. This decreases the teacher’s role as ‘provider of answers’ and students learn to rely on each other and work together” (Scoter & Ellis, 2001, pg. 37).

Other instructors talk about how students working together developed naturally through the students desire to share. One author says, “One of the big things that I see is the collaboration… when they find something or how to do something really neat they share it with each other and help each other out” (Fairman, 2004, pg. 20). Another author writes, “For many students, the feeling of mastery, as well as the social recognition that often accompanies such accomplishments, can truly make a difference in one’s sense of efficiency as a learner. Not surprisingly, most teachers report that technology use enhances their students’ self-esteem” (Singh & Means, 2000, pg. 1). They also quote a fifth grade teacher saying, “I’ve also seen kids helping each other a lot at the computer. The ones that pick it up faster, they love teaching it to someone that doesn’t know it yet” (Singh & Means, 2000, pg. 1). As you can see above, many teachers and researchers have viewed the students’ joy in teaching each other. The students naturally want to share what they have learned. By a student helping or showing a friend an action on the computer they receive praise and social recognition. This praise and recognition gives the students a boost, resulting in higher motivation.

Through this praise students are acknowledging the importance of knowing how to use the computer, fix the computer, or perform specific actions on the computer. They not only feel that it is important, the act builds their self-esteem, and gives them something to brag about. This brings us to the question, why do they feel it is important to know how to use technology?

Many children see the computer as something that prepares them for life. Many kids mention how computers teach them ‘real’ life skills and will help them obtain better jobs when they are older. One author cites several students’ comments about how the computers will help them later in life. One female student said, “I know you’re preparing me for college” (Barrios, 2004, pg. 87). “Kevin says, ‘Having a laptop makes me feel responsible’ Taylor says, ‘Using laptops is preparing us for jobs in the future when we will use technology’” (Barrios, 2004, pg. 5). These students felt that technology was preparing them to be responsible adults, which consists of being prepared for higher education and a professional career.

Many sources mentioned how the use of technology equalizes their students. One author wrote, “For some children who have unique learning styles, computers can reveal hidden strengths. At the computer, children can approach learning from a variety of perspectives and follow various paths to a goal” (Scoter & Ellis, 2001, pg. 13). In the Apple 1 to 1 learning solution web-cast, a principal talked about one special education student’s story. A learning disabled boy felt like the computer made him as good as everyone else because the computer could read his writing back to him and he could fix it. Technology also allows students to integrate skills they are proficient at into their computer work, which may include art, drawing, writing, math, as well as music or sound. By using technology capabilities to equalize students’ work, their self-esteem rises, creating a higher motivation in students to be more successful in school.

Logo Spirit

The second methodology that is well known in the pre K -12 schools is called the ‘Logo spirit’. The ‘Logo spirit’ is a group of methods originally designed to teach Logo to students. Logo is a programming language specifically designed to teach children math and writing through the use of animation.

According to the Logo Foundation, Logo software has been used in public schools since the 1970’s. Since that time it has been growing in popularity all over the world. In 1990’s it took a downward spiral in the United States due to the availability of other educational software with more sophisticated graphics, but it is still going strong in other countries. It is even a mandatory part of the curriculum in the UK. The most popular of the Logo software is the Turtle software. This is one of the initial programs in Logo. It was originally designed to control robots, but was changed into graphical software. One of the selling points of the software is that it uses the information students know and that helps them use that information to learn and apply mathematics. This software is widely known for its ability to teach geometry. Unfortunately, the graphics that were once impressive are crude for today’s graphical standards. This led to several new versions of Logo, which have been used over the years. The most popular graphical and award winning Logo software of today is Microworlds Project Builder.

Today, Logo is known as much for its software as for the pedagogy taught along with the software. “In the early days of computers in education, Logo made a big impact because it provided powerful computational facilities for children and a completely different way of talking about education. Some of these facilities, such as graphics, were revolutionary considering the computer power available at that moment, and for many years Logo was the only educational software that allowed students to develop educational computer activities. The developers of Logo did everything possible and impossible to implement these facilities because they stressed important pedagogical issues. Even today the pedagogical innovations introduced by Logo, the Logo aesthetics, are an important landmark in education. People who still use and value Logo today do it because of its aesthetics and because of its potential as a revolutionary educational too” (Valente, 1995, pg.4). It is very important to note that within a few years of releasing the software, the developers released a book on how to use the software in the classroom. The developers then had workshops to teach both the software and the pedagogy to teachers.

Papert, the author of books on the ‘Logo spirit’ and one of the creators of Logo describes the ‘Logo spirit’ in this way, “‘Logo is a programming language plus a philosophy of education’ and this latter is most often categorized as ‘constructivism’ or ‘discovery learning.’ But while the Logo spirit is certainly consistent with constructivism as understood… there is more to it than any traditional meaning of constructivism and indeed more to it than ‘education.’”(Papert, 1999, VII). He sees the Logo spirit not only as a way of teaching, but as a way of life. Papert’s books include Mindstorms, The Children’s Machine, and The Connected Family: Bridging the Digital Generation Gap, as well as several others.
There are many main themes throughout the Logo spirit, the first is that students learn by constructing their own knowledge through exploration. This means that children are in charge of their own discoveries. The teachers are there to help lead an activity, but they are not to tell a student what is going to happen. That is for the student to find out. Papert explains it this way, “A crucial aspect of the Logo spirit is fostering situations which the teacher has never seen before and so has to join the students as an authentic co-learner. This is the common constructivist practice of setting up situations in which students are expected to make their own discoveries, but where what they “discover” is something that the teacher already knows and either pretends not to know or exercises self-restraint in not sharing with the students” (Papert, 1999, IX). When no specific outcome is predicted, the process becomes the goal instead of the solution. This process helps with the second important part of the Logo spirit.

The second, main theme in the Logo spirit is that there is no ‘right’ or ‘wrong’ answer. The process is about learning, not in getting the same solution as everyone else. There can be several solutions to one problem, so there is no right answer. Papert says, “Of course rejecting ‘right’ vs. ‘wrong’ does not mean that ‘anything goes.’ Discipline means commitment to the principle that once you start a project you sweat and slave to get it to work and only give up as a very last resort. Life is not about ‘knowing the right answer’ – or at least it should not be – it is about getting things to work” (Papert, 1999, VII). This is a very powerful idea in programming and technology, and the capability to produce several results allows for creativity among the students.

A good example of the above two themes in action is the following situation where children are trying to draw a square in Logo and then have the square repeat in a circular pattern. The teacher explains that the process is a little difficult the first time because they are learning in steps. The distance is eyeballed and not always accurate. In one scenario a child draws a triangle like object instead of a square. The teacher responds by saying, “It's not quite a square but it's interesting. Let's give this drawing a name and teach it to the computer. In other words we'll follow through on this project” (Solomon, 1976, pg. 81). This allows the child to continue learning the process of teaching the computer a shape by exploration, without having the child feel that they did it ‘wrong’. Once they have learned all the steps, the child then has time to go back and redo the process with a square.
Logo can be used in the elementary and preschool classrooms. A fundamental belief in the logo methodology is “that children of all ages and from all social backgrounds can do much more than they are believed capable of doing. Just give them the tools and the opportunity” (Papert, 1999, XV). This belief is applied to all children. A great example of a child with a disability performing higher then expected using Logo was described in Howe & O’Shea. “Perhaps the most dramatic change we've observed with a boy who had been labeled "dyslexic". Despite specialist remedial teaching, his class work was very poor and he did not expect to succeed. He had a well defined role in class as a ‘buffoon’. Unlike his schoolwork, this boy quickly grasped LOGO programming and was soon helping other boys in his group. His nickname changed to ‘teach’, his reading and writing began to improve, and the change in his self-confidence was remarked on by his teachers and his parents. For example, when the class was asked to describe the set of even numbers divisible by two and the set of odd numbers divisible by two, he answered in terms of set-generating procedures, namely, ‘a set that doesn't finish’ and ‘a set that doesn't start’, and justified his answer quite articulately in front of the other boys when challenged by his teacher” (Howe & O’Shea, 1978, pg. 10).

Children can also do more then expected at an earlier age. “Children as young as first grade apply such mathematical notions as number, arithmetic, estimation, measure, patterning, proportion, and symmetry to their Logo work. Similar observations of intermediate grade children indicate that Logo may make it possible to explore some math concepts earlier than is currently believed” (Clements & Meredith, 1992, pg. 2). Logo is one programming tool that was designed for younger children. “Even Michelle, who is 3 and cannot yet read, can program the turtles (trains, cars etc.) to move!” (Kac, 2006, pg. 1). It is quite amazing that young children can grasp concepts that usually would not be introduced until later in life.

The Kac (2006) site also describes the different levels of Logo’s programming capabilities. Since there are so many different versions of Logo, they recommend Microworlds Project Builder. This version is said to contain graphics that are more like KidPix, KidWorks, and Thinking Things, while also containing a programming language that is kid friendly. At the basic level children can use the program to create stamps and change objects colors. At the next level students can have the stamps, pictures, objects, or sprites move or change shape. At the highest level of programming in Logo, children and adults create their own full blown projects.

Here is one description of the capabilities of Microworlds Project Builder by the author of the Kac site, “MicroWorlds Project Builder™ however is a true programming environment and as such is limited only by the child's imagination. It has so many features, which allow the child to create lifelike animation that it never grows stale. One of the most popular features with Nicole, is that, if you have a sound card, the child (or adult!) can record his own sounds, such as slurps, yelps, greetings - the works; and then program the turtles, which may be dressed like any shape, to make the sounds when something happens; such as a big "OUCH!" when it bangs into a wall” (Kac, 2006, pg. 2). The attraction to this program not only seems to be about what can be learned, but also the ease of producing professional quality of work and the endless use of creativity. Several examples of Nicole’s work can be seen on http://www.kidsandcomputers.com/nicki_mn.htm.

Another couple of sites full of creative activities for logo are at http://www.stager.org/articles/munchkins.html for toddlers and http://www.stager.org/logo.html for older students. These activities were posted by Gary Stager, a teacher who has worked closely with Seymour Papert in the classroom, and has written his own books on how to use the computer in the classroom.

Programming Animation
Programming animation can be fun and exciting, while also teaching students valuable skills. “The underlying goal is to teach computer concepts more effectively through graphics. We believe this approach to be effective since it naturally encompasses several education-theoretical techniques, including: visual feedback, problem-based learning, intentional learning, and constructivism” (Matzko & Davis, 2006, pg. 169). Programming animation also teaches problem solving skills, logic, and math.

Math and programming have a very close connection. “Mathematics is one of the disciplines that helped give birth to computer science,” (Henderson, Barker, Epp, & Marion, 2002, pg. 236). So, it really isn’t a surprise that math, logic, and problem solving is needed to program. Math is an integrated throughout the whole programming process. The level of math needed in each stage is increased as the developer creates more complicated actions within the program. It starts out simple with students needing basic algebra skills and an understanding of variables and can move up to the use of discrete mathematics, string theory, and more.

Programming animation also allows students to be creative, imaginative, and artistic. Imagine a world you are in control of creating. You can add sound, words, pictures, movement, and create interaction between the objects. This world can be anything you would like. For example you may create a game, story, movie, program for learning, or even a virtual garden. All you need are some basic programming tools and you can create anything you can imagine.

As children create their own worlds, they apply their understanding of problem solving, logic, and math. Shneiderman says this best when he quotes (PCAST, 1997), “Basic skills are learned not in isolation, but in the course of undertaking (often on a collaborative basis) high-level ‘real-word’ tasks…The student assumes a central role as the active architect of her or his own knowledge and skills, rather than passively absorbing information proffered by the teacher” (Shneiderman, 2002, pg. 117). By programming the students take learning into their own hands. They decide what action they want their animation to do, which requires them to figure out what math they need to do it.

While working on projects students should have a chance to collaborate and help each other. Encouraging students to talk through problems with one another helps them think through, articulate, and expand their understanding of the concepts. “As learners, we want to see how closely what we understand is related to what another person understands. We stretch our own knowledge by finding out what others see and know” (Goldman-Segall, 1998, pg. 7). Through communication we clarify and reinforce our own understanding.

When an educator or student is helping another student they should make sure that their hands do not touch the other person’s keyboard or mouse. Since the purpose of helping the other student is to teach them, the student needs to be at the helm.

There are four phases in programming animation. These stages are to understand the project, create a plan, program, and view results/debug. These stages are important in any programming language used with animation. Each of the phases has different math, logic, and problem-solving skills needed. These four phases also follow Polya’s four-step process for problem solving: understand the problem, devise a plan, carry out the plan, look back and check (Miller, Heeren, & Hornsby, 1997, pg. 21).

The first time through a class project, a teacher might have already worked through each stage, and be focusing on teaching the fundamental tools of programming or specific math concepts that students will be using repeatedly. For each additional project the teacher should give time for the students to work through each step, since these problem-solving skills are a vital part of math and programming.

Phase one: understanding the project

Phase one occurs when a project is first introduced to the class. Students will have to read the specifications and make sure they understand what is being asked for. To have a clear understanding students should read through the specifications several times. Before getting started on the design they should ask any questions they may have.

When projects are being donated to people outside the classrooms, students should make sure they have a clear understanding of what a client wants and any specific restraints they may have. Sometimes it is helpful to have students write up a list of questions before seeing their client.

Phase two: planning stage

Phase two occurs when the students have a clear understanding of the specification and restraints and are ready to design the project. This stage is very important to work through so a program is as clear and concise as possible. It is important to develop good design and planning strategies early. As programs become more complex it is harder to create efficient and readable code with ‘fly by the seat of the pants’ programming. Programmers commonly use the phrase ‘KISS’ (Keep It Simple Stupid).

This stage is also very important when more then one member is working on a program. By creating an efficient design several people can work on a project and each will know how their part of the project will interlock with the other pieces. The more people working on a project and the bigger the design, the more important it is to have a detailed plan.

Problem-solving capabilities are very important during this design phase. George Polya has several problem-solving strategies that are very useful. Here is a list of those strategies:

· Make a table or a chart

· Look for a pattern

· Solve similar simpler problems

· Draw a sketch

· Use inductive reasoning

· Write an equation and solve it
If a formula applies:

· Work backwards

· Guess and check

· Use trial and error

· Use common sense

· Look for a catch if an answer seems too obvious or impossible

(Miller, Heeren, & Hornsby, 1997, pg. 21)

Many of these problem-solving skills are necessary in the design phase; others are used throughout the project. These are not things that should be memorized as a list, but are strategies that should be used and applied throughout the programming process. Four of the most common of the strategies used in the design phase are: Use inductive reasoning, look for a pattern, make a table or a chart, and draw a sketch.

Using inductive reasoning is pretty clear. Use your own logic to work through how the program should be designed. Of course this can be easily said but harder to do. Sometimes it is best to take a project and to break it down into sections. This is where the other three problem-solving strategies come in handy.

Looking for patterns in a program can be very helpful. There are different types of patterns to look for. Most beginning programmers start by looking at the flow of the program; for example what happens first, second, third, and so on. Then as they proceed thorough the program any areas where a pattern occurs and a section of the program does the same thing in multiple spots would be made note of. This is because a method or function can be written once, then each time the action is needed, the method or function is referenced.

It is also important for students to decide on what types of algorithms are needed to sort through and access data. There are several different types of algorithms. How the information needs to be accessed makes a difference. Some types of information can be found faster in a binary search tree then it might in a linked list. The designer needs to look at the pattern in how their data is to be accessed and decide on the quickest algorithm for that process. The pattern in which the information is called also affects how the information is stored in the database.
There is another way that students can break down their design based on patterns. If students are programming in Object Oriented Programming (OOP), then they will want to break the program into different classes and their methods. OOP can be found in most beginning programming books on Java, C++, and C#.

Students may make a table, chart, or draw a sketch of their program. A chart that records the process of the program from beginning to end, with the different paths in-between, is called a flow chart. There are also several other types of charts available in programming. In OOP, a class diagram can be very useful. Class diagrams contain the name of the object, the objects attributes, and the method or services (Becker, 2002). The type of charts and tables used depends on the teacher’s requirements or what the students have found useful in the past. Several great charts being applied to programs can be found in Head First Java, by Kathy Sierra & Berts Bates.

Phase three: programming

Once the design is finished, it is time to put the plan into action. The math skills involved in the programming phase are much more extensive. Problem solving, logic, and all types of math formulas can be used. The math needed depends on how complicated and sophisticated a program becomes. It is very helpful to have a variety of resources available for this stage. Resources can include books, websites, or notes on programming, animation, and math.

Remind programmers to save often and create multiple copies of their projects as they work. It is helpful to have copies throughout the programming process in case an unknown error is detected later on and a solution can’t be found. By having the previous versions, the programmer can back track through the copied versions to find one without the unfixable condition. Projects should also be saved in multiple places just in case. Three great places to save copies are on the hard drive, a flash drive or disk, and email it to oneself. There is also software that allows programs to be upgraded and stored on the Internet. These programs often save multiple versions for the programmer and will highlight where the changes are made. This type of software is called version control. Specific names of software that can be used for version control are TortoiseCVS, TortoiseSVN and Visual SourceSafe (VSS). VSS is commercial, but the other two are open source.

Problem-solving strategies will come in handy during the programming stage. One of the most common strategies used in this stage is to solve similar simpler problems. Sometimes it is easier to figure out how to program a specific action in a different program and then to copy and paste it in when it works right. Programs can get very big, and sometimes parts of the program are stored in different areas, so it can get confusing where specific code is located. Commenting code helps a lot, but there is still the matter of jumping from one part of the screen to another. Programming something new in an application that only does that one specific function can be very helpful.
Logic is also used during this stage. There are a variety of logic structures that can be used in programming. Each programming language has the logic syntax written a little bit differently, but most are the same logical sequence. Some of the logic structures are

· if structure (single selection)

· if/else structure (double selection)

· switch structure (multiple selection)

· while structure (repetition)

· do/while structure (repetition)

· for structure (repetition)

(Deitel & Deitel, 2003, p. 132)

There are different times that a logic statement will be needed in a program.

The if structure may be used by having an action occur when the user presses a button. An example of the if/else structure is if the user catches the item falling from the branches they receive points, else the item is dropped and the user loses a turn. A switch statement can occur when multiple actions are possible. For example the user has an option of picking up a card. If the card gives them a score of 21 they win, if they get a score over 21 they lose, if the score is below 21 then they have the option of drawing again. While and for structures are commonly used for something to occur a specific amount of times. Lets say the user wants their character to move forward three spaces, the programmer can send the integer to a for or while loop that will have the function moveForward called 3 times. A do-while is used when the programmer wants an action to occur at least one time, but they only want the condition to loop through again if a certain condition still exists. For example a program will run through a game once, but will only loop through it again while play game is true, which may be determined by a user putting in another quarter within 10 seconds of the end of the game. As you can see there are a variety of situations in which students will need to program logical statements in their projects.

Basic math will be needed to make animation move on the screen, to keep track of score or turns, and to have the animated objects interact with one another. Other math may be needed to rotate the object, determine the distance between two objects, create a random effect on the screen, or to show friction as an object moves. The math needed is really determined by the project and how fancy the programmer wants to get.

The teacher may take time out to teach specific math and then have programmers apply it to their projects. This can be very useful, because the students learn how to do the math, and then the student is able to apply the math concept to a real problem, and then see it in action.

Phase four: viewing results/debugging

A programmer will be flipping back and forth between the viewing/debugging phase and the programming phase. Once a section of programming is complete it should be checked to make sure that it works. The programmer should not wait until they are finished writing all the code to test the program because this may make the debugging process much harder.

There are three types of errors to look for: compile-time errors, run-time errors, and logic errors or intent errors (Becker, 2002). Compile-time errors are syntax errors that occur when the computer tries to compile the code. Run-time errors happen when the program is running and an error occurs like a crash. Logic or intent errors occur in the program such as a character on the screen being upside down.

The screen for viewing the program in action is called the User Interface (UI). The UI is a great tool for exploring and looking at math concepts. It can be used to test out a formula, or to slightly change a formula to see what might occur. If a formula is miscalculated the student will see the result. Sometimes these results have funny consequences such as a sprite turning upside down or having a sprite moving upwards on the screen instead of left or right. These types of errors allow the environment to be safe and fun to work in.

A lot of learning software uses the UI to teach specific math concepts to students, by allowing the student to slightly tweak the formulas. Roschelle found the combination of collaboration and the use of tweaking math formulas on the UI helps students understand mathematical concepts at a level that physicist might. “This combination of utterances and gestures articulates a concept analogous to a physicist’s concept of acceleration. In a physicist’s conception, acceleration describes a change of velocity. Carol’s presentation also describes acceleration as changing velocity via the pulling metaphor (i.e., “It pulls it”). Her grasp-and-drag gesture captures the process of vector addition that would occur over the course of 1 sec. Moreover, Carol’s discussion of the initial and final states of velocity agrees with a scientific understanding of the vectors that occupied the spatial positions that she indicated” (Roschelle, 1992, pg. 12). By viewing different reactions a formula has in the virtual environment, students can start to grasp how these equations play a part in reality.

Once a student is finished designing their program, it is fun to have them share it with the class. This will give them a chance to present what they have created. Usually the focus of the project will be based off of the UI, but it doesn’t always have to be. When sharing students should be asked to explain something in their program that was hard to do and how they over came it. This will give the student an opportunity to explain a concept that they worked through, which may also help other students. It also gives them a chance to pull out their code if they would like too. The question is also frequently asked in programming interviews, so the more chances the student receives in answering this question the better.

Literature Review Conclusion
This literature review demonstrated the different methodologies being used to teach math in programming. At the college level, teaching programming was the priority and the math, logic, and problem solving was just expected or integrated in the way the instructor taught about organizing the program. Although, instructors did feel very strongly that math skills were needed to succeed in computer science. In the preschool through 12th grade level, programming was a tool to teach other subjects. Many of the articles for the younger students focused on how the technology was changing the school environment and motivating the students. The final topic discussed was the four stages of programming and how teaching students to program animation taught them problem solving, logic, and math skills.

PAGE
Page 30

