Upgrade PyTorch

Looks like I need to upgrade PyTorch! The error message:

NVIDIA GeForce RTX 3070 with CUDA capability sm_86 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70. If you want to use the NVIDIA GeForce RTX 3070 GPU with PyTorch, please check the instructions at

https://pytorch.org/get-started/locally/

Install the latest CUDA version on Windows (3.0GB) – https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local

Upgrade PyTorch:

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

Get arch list in Python.

import torch
torch.cuda.get_arch_list()

[‘sm_37’, ‘sm_50’, ‘sm_60’, ‘sm_61’, ‘sm_70’, ‘sm_75’, ‘sm_80’, ‘sm_86’, ‘compute_37’]

And works!

I tried to build a ML Text to Image App with Stable Diffusion in 15 Minutes

[StableDiffusionApp]

[Miniconda Installer]

I commented out the following from requirements.txt:
#torch==1.12.1+cu113
#torchaudio==0.12.1+cu113
#torchvision==0.13.1+cu113

Run the terminal commands from the Conda terminal:
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch

py -m pip install –upgrade pip
pip install -r requirements.txt
pip install customtkinter diffusers transformers ftfy

python app.py

ImageNet

[ImageNet] is an image database organized according to the WordNet hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images. The project has been instrumental in advancing computer vision and deep learning research. The data is available for free to researchers for non-commercial use.

TensorFlow Developer Certificate in 2022: Zero to Mastery

[TensorFlow Developer Certificate in 2022: Zero to Mastery]

[Github: TensorFlow-Deep-Learning]

[colab.research.google.com]

[playground.tensorflow.org]

[NumPy]

[Docs: tf.constant]

[Docs: tf.Variable]

[Docs: tf.random]

[Docs: tf.random.shuffle]

[Docs: tf.size]

[Docs: tf.math]

[Docs: tf.linalg.matmul]

[Docs: tf.tensordot]

[Docs: tf.cast]

[Docs: tf.abs]

[Docs: tf.reduce_min]

[Docs: tfp.stats.variance]

[Docs: tfp.stats.stddev]

[matrixmultiplication.xyz]