The [Raspberry PI 3] is now on sale for $35. This increases the RAM to 1GB. The 64-bit quad processor is 10 times faster than the original Raspberry PI. And now RPI3 comes with built-in wifi.

The Development Blog of Tim Graupmann
The [Raspberry PI 3] is now on sale for $35. This increases the RAM to 1GB. The 64-bit quad processor is 10 times faster than the original Raspberry PI. And now RPI3 comes with built-in wifi.

Adafruit has a [post] on how to turn your Raspberry PI into a USB device that can connect to your computer like a peripheral. This could be useful for a ton of projects.
Idea wall:
1) A custom audio device that can change the pitch using the input from a guitar pickup.
2) A multiple camera device to auto switch to the camera being looked at.
To use a camera with the Raspberry PI, first [configure the Raspberry PI] to enable the camera.
In order to send large images from the Raspberry PI camera to a web server, the image has to be sent in parts. This requires the Python `poster` module. https://pypi.python.org/pypi/poster/
To be able to install a python module, `pip` has to be installed.
sudo pip install poster
This is the server PHP page that saves the image.
<?php
$image = $_FILES["image"];
if ($image == null) {
echo "Missing image to save!";
} else {
echo "Saved image!";
$tmp_name = $_FILES["image"]["tmp_name"];
move_uploaded_file($tmp_name, "image.jpg");
}
?>
This Python script sends the image to the server.
#!/usr/bin/env python
import urllib, urllib2
from poster.encode import multipart_encode
from poster.streaminghttp import register_openers
register_openers()
url = "http://domain.com/path/save_image.php"
print "url="+url
filename = 'image.jpg';
if (os.path.isfile(filename)) :
values = {'image':open(filename)}
data, headers = multipart_encode(values)
headers['User-Agent'] = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
req = urllib2.Request(url, data, headers)
req.unverifiable = True
content = urllib2.urlopen(req).read()
print (content)
else:
print 'No image file found to upload';
print '\r\nProgam complete.'
This script will capture from the camera and then call the above script to upload the image.
#get access to the camera
from picamera import PiCamera
#import so we can invoke another script
import subprocess
#sleep so we can wait on the camera
from time import sleep
# create a camera object
camera = PiCamera()
#set the image resolution
camera.resolution = (320, 240)
#rotate the camera if upside-down
camera.rotation = 180
#show preview with some transparency
camera.start_preview(alpha=225)
#wait two seconds for camera lighting
sleep(2)
#save image locally
camera.capture('image.jpg')
#stop the preview
camera.stop_preview()
#invoke the script to upload the image
subprocess.call('python save_image.py', shell=True)
Windows 10 can be installed on the Raspberry PI 2 from a free download.
http://ms-iot.github.io/content/Downloads.htm
The servo can be turned clockwise, counter clockwise, and to the 90 degree position, but it lacks a way to query the current rotation. The rotation needs to be calculated manually and this script is a first attempt.
#!/usr/bin/env python
import RPi.GPIO as GPIO
import datetime
import time
servo_pin = 22
servo_pin2 = 18
# 60 degrees / 0.1seconds
servo_speed = 0.1
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(servo_pin, GPIO.OUT)
GPIO.setup(servo_pin2, GPIO.OUT)
last_time = datetime.datetime.now()
current_time = datetime.datetime.now()
sumTime = datetime.timedelta(0, 0)
accuracy = 0.01
targetRotation = 0
currentRotation = 90
pulse1 = GPIO.PWM(servo_pin, 50)
pulse2 = GPIO.PWM(servo_pin2, 50)
logTime = datetime.datetime.now()
def log(msg):
global deltaTime
global logTime
if (logTime < datetime.datetime.now()):
logTime = datetime.datetime.now() + datetime.timedelta(0, 0.5)
print msg
return
def reset(pulse):
pulse.start(7.5);
pulse.ChangeDutyCycle(7.5)
return
def update(pulse, targetRotation):
global deltaTime
global sumTime
global servo_speed
global accuracy
global currentRotation
log ("TargetRotation: " + str(targetRotation) + " CurrentRotation: "+str(currentRotation))
if (targetRotation == 90):
pulse.ChangeDutyCycle(7.5)
if ((currentRotation - targetRotation) < -accuracy):
currentRotation += servo_speed
elif ((currentRotation - targetRotation) > accuracy):
currentRotation -= servo_speed
else:
pulse.ChangeDutyCycle(0)
elif ((currentRotation - targetRotation) < -accuracy):
pulse.ChangeDutyCycle(12.5)
currentRotation += servo_speed
elif ((currentRotation - targetRotation) > accuracy):
pulse.ChangeDutyCycle(2.5)
currentRotation -= servo_speed
else:
pulse.ChangeDutyCycle(0)
return
try:
reset(pulse1)
reset(pulse2)
time.sleep(1)
print "setup complete"
while True:
last_time = current_time
current_time = datetime.datetime.now()
deltaTime = current_time - last_time;
sumTime += deltaTime;
if (sumTime.total_seconds() > 3.0):
#print (sumTime)
sumTime -= datetime.timedelta(0, 3)
targetRotation = (targetRotation + 45) % 180
update(pulse1, targetRotation);
update(pulse2, targetRotation);
time.sleep(0);
except KeyboardInterrupt:
print '\r\nProgam complete.'
GPIO.cleanup();
Using pulse modulation, the Raspberry PI can adjust a servo.
https://www.youtube.com/watch?v=ddlDgUymbxc
Here I combined the LED blinking example with the servo example.
#!/usr/bin/env python import RPi.GPIO as GPIO import time led_pin = 15 led_pin2 = 16 led_pin3 = 36 led_pin4 = 37 GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(led_pin, GPIO.OUT) GPIO.setup(led_pin2, GPIO.OUT) GPIO.setup(led_pin3, GPIO.OUT) GPIO.setup(led_pin4, GPIO.OUT) GPIO.setup(22, GPIO.OUT) p = GPIO.PWM(22, 50) p.start(7.5); try: while True: GPIO.output(led_pin, GPIO.HIGH) GPIO.output(led_pin2, GPIO.HIGH) GPIO.output(led_pin3, GPIO.HIGH) GPIO.output(led_pin4, GPIO.HIGH) p.ChangeDutyCycle(7.5) time.sleep(1) GPIO.output(led_pin, GPIO.LOW) GPIO.output(led_pin2, GPIO.LOW) GPIO.output(led_pin3, GPIO.HIGH) GPIO.output(led_pin4, GPIO.HIGH) p.ChangeDutyCycle(12.5) time.sleep(1) GPIO.output(led_pin, GPIO.HIGH) GPIO.output(led_pin2, GPIO.HIGH) GPIO.output(led_pin3, GPIO.HIGH) GPIO.output(led_pin4, GPIO.HIGH) p.ChangeDutyCycle(7.5) time.sleep(1) GPIO.output(led_pin, GPIO.HIGH) GPIO.output(led_pin2, GPIO.HIGH) GPIO.output(led_pin3, GPIO.LOW) GPIO.output(led_pin4, GPIO.LOW) p.ChangeDutyCycle(2.5) time.sleep(1) except KeyboardInterrupt: print '\r\nBack to neutral...' p.ChangeDutyCycle(7.5) time.sleep(1) print '\r\nProgam complete.' GPIO.cleanup();
The following Python alternates between two LEDs and then goes dark before repeating.
#!/usr/bin/env python import RPi.GPIO as GPIO import time led_pin = 15 led_pin2 = 37 blinkSpeed = 5/2.0 #blink x times per second GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(led_pin, GPIO.OUT) GPIO.setup(led_pin2, GPIO.OUT) try: while True: GPIO.output(led_pin, GPIO.HIGH) GPIO.output(led_pin2, GPIO.LOW) time.sleep(blinkSpeed / 3.0) GPIO.output(led_pin, GPIO.LOW) GPIO.output(led_pin2, GPIO.HIGH) time.sleep(blinkSpeed / 3.0) GPIO.output(led_pin, GPIO.LOW) GPIO.output(led_pin2, GPIO.LOW) time.sleep(blinkSpeed / 3.0) finally: print 'finally'
Here’s a short Python script to toggle an LED using GPIO.
#!/usr/bin/env python
import RPi.GPIO as GPIO
import time
pin = 15
blinkSpeed = 1/5.0 #blink x times per second
GPIO.setmode(GPIO.BOARD)
GPIO.setup(pin, GPIO.OUT)
try:
while True:
print('PIN {} is going HIGH'.format(pin))
GPIO.output(pin, GPIO.HIGH)
time.sleep(blinkSpeed / 2.0)
print('PIN {} is going LOW'.format(pin))
GPIO.output(pin, GPIO.LOW)
time.sleep(blinkSpeed / 2.0)
finally:
print 'finally'
To make a Raspberry PI 2 Laptop, all you need is a mouse, keyboard, and TFT display. The battery is optional.
http://techcrunch.com/2015/04/17/this-diy-raspberry-pi-laptop-is-perfect-for-your-weekend-machinations/?ncid=rss
I’ve wanted to play my Cello with RockSmith but the octave needs to be adjusted. This DIY project shows how to make your own tone cable and I could use the Raspberry PI to adjust the pitch.
http://makezine.com/2015/01/30/for-those-about-to-rocksmith-hack-a-custom-cable/
Maybe I can sacrifice one of my old scales to repeat this detailed project and connect to the Raspberry PI 2.
https://www.youtube.com/watch?v=fPzUtzFJFus
I’ll graph the results using ChartsJS.
http://www.chartjs.org/
Installing Sails.js required building and installing Node.js from source.
I let the source build overnight and then moments later ‘sails lift’ was functional.
https://github.com/tgraupmann/TAGENIGMA-Docs/blob/master/Sails.md
Also the reference guide is super helpful.
http://sailsjs.org/#!/documentation/reference/
Here is also a useful C# client:
https://github.com/Quobject/SocketIoClientDotNet
I picked up a Raspberry PI 2 and it’s working super speedy. Quad-core 900 MHz, ARM, 4-usb, HDMI/audio out.
http://www.amazon.com/CanaKit-Raspberry-Ultimate-Starter-Components/dp/B00G1PNG54/
After settting up WIFI, installing VNC made connecting the display, mouse, and keyboard no longer necessary. The boot process can be altered to start VNC server automatically.
https://www.raspberrypi.org/documentation/remote-access/vnc/